Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
In this paper we present a simple re-ranking method for Automatic Sentence Simplification based on the noisy channel scheme. Instead of directly computing the best simplification given a complex text, the re-ranking method also considers the probability of the simple sentence to produce the complex counterpart, as well as the probability of the simple text itself, according to a language model. Our experiments show that combining these scores outperform the original system in three different English datasets, yielding the best known result in one of them. Adopting the noisy channel scheme opens new ways to infuse additional information into ATS systems, and thus to control important aspects of them, a known limitation of end-to-end neural seq2seq generative models.
translated by 谷歌翻译